The final value problem for evolution equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Final Value Problem for Evolution Equations

satisfying the prescribed final-value, u(T) = f. We assume A is maximal accretive, so the problem is generally not well-posed. Assume in addition that A2 is accretive. We shall demonstrate that there is at most one solution of this problem, and we give a constructive quasireversibility method of constructing solutions of (1.1) which approximately satisfy the final condition. In particular, one ...

متن کامل

The Final Value Problem for Sobolev Equations

Let A and B be m-accretive linear operators in a complex Hubert space H with D{A) C D(B). The method of quasi-reversibility is used to obtain a solution to the Sobolev equation (d/dt)[(I + B)u(t)] + Au(t) = 0, 0 < l < 1, which approximates a specified final value u(\) = f. In general, when D(A) C D(B), it is not possible to find a solution which achieves exactly the final value w(l) = /. 1. Let...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

On boundary value problem for fractional differential equations

In this paper‎, ‎we study the existence of solutions for a‎ ‎ fractional boundary value problem‎. ‎By using critical point theory‎ ‎ and variational methods‎, ‎we give some new criteria to guarantee‎ ‎ that‎ ‎ the problems have at least one solution and infinitely many solutions.

متن کامل

THE CAUCHY PROBLEM FOR p-EVOLUTION EQUATIONS

In this paper we deal with the Cauchy problem for evolution equations with real characteristics. We show that the problem is well-posed in Sobolev spaces assuming a suitable decay of the coefficients as the space variable x → ∞. In some cases, such a decay may also compensate a lack of regularity with respect to the time variable t.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1974

ISSN: 0022-247X

DOI: 10.1016/0022-247x(74)90008-0